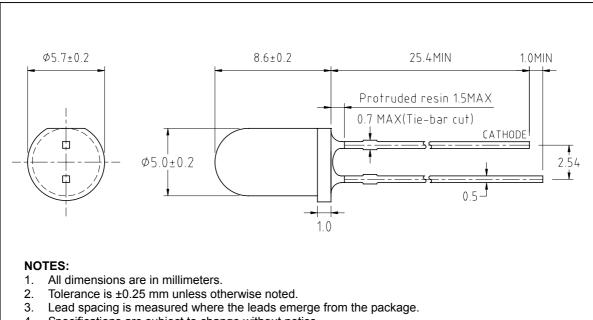
High Brightness Deep Blue LED Lamp

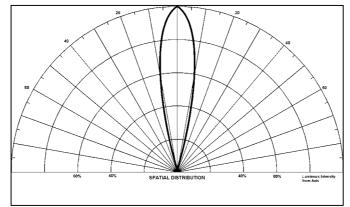
5mm Through-Hole Package


BL-LBDB5N18C series

FEATURES

- High Brightness Deep Blue (450nm) LED.
- GaN on Sapphire die.
- 5mm round resin mold.
- Water Clear Lens.
- Medium-Wide viewing angle (20 deg)

APPLICATIONS


- Dental and Medical applications
- Displays and signs
- Instrumentation.
- Toys and electronics
- Decorative /Accent Lighting

PACKAGE OUTLINE DIMENSIONS:

4. Specifications are subject to change without notice.

BEAM RADIATION PATTERN

Brite-LED Optoelectronics

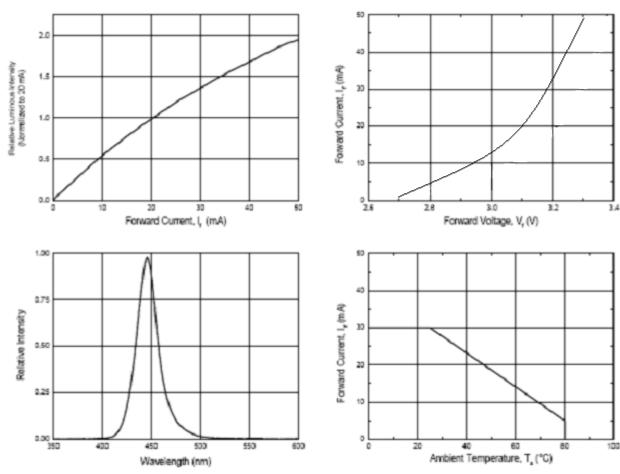
www.brite-led.com

High Brightness Deep Blue LED Lamp

5mm Through-Hole Package

BL-LBDB5N18C series

Parameter	Symbol	Value	Unit mA				
Continuous Forward Current	I _F	30					
Peak Forward Current (1/10 Duty Cycle, 0.1msec Pulse width)	I _{Fp}	100	mA				
Power Dissipation	Pd	120	mW				
Forward Voltage	V _f	3.8	V				
Reverse Voltage	V _R	5.0	V				
Operating Temperature	T _{opr}	-40 to +85	°C				
Storage Temperature	T _{stg}	-45 to +100	°C				
Lead Soldering Temperature (1.6mm (0.063") from body)	260°C for 5 seconds						


ABSOLUTE MAXIMUN RATING (at $T_A = 25^{\circ}C$)

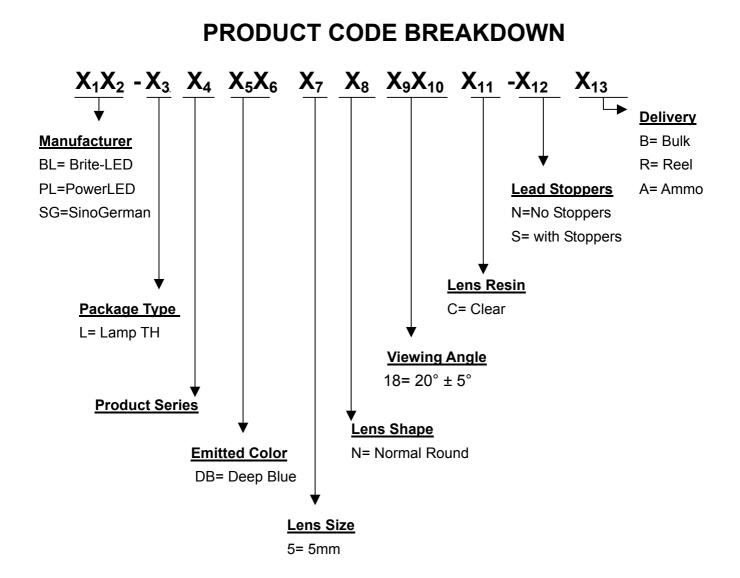
ELECTRICAL / OPTICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$)

Parameter		Symbol	Min	Тур	Max	Unit
Forward Voltage	F= 20 mA	VF		3.1	3.4	V
Radiant Intensity (on optical axis)	F= 20 mA	l _r		20		mW/sr
Luminous Intensity	F= 20 mA	l _v	400	710	880	mcd
Dominant Wavelength	F= 20 mA	λ_d	445	450	460	nm
Peak Wavelength	F= 20 mA	λρ	440	445	455	nm
Spectrum Radiation Bandwidth	F= 20 mA	Δλ		23		nm
Viewing Angle		2 θ 1/2	18	20	26	deg
Reverse Current	V R= 5 V	l r		10	100	μA

BRITE-

TYPICAL ELECTRICAL CHARACTERISTICS CURVES (at 20 mA DC / T_A = 25°C)

GENERAL NOTES:


- 1. Luminous Intensity (Iv) is measured with a light sensor and filter combination (goniospectroradiometer) and is the Luminous Flux per unit solid angle (steradian) emitted by the LED lamp in the direction of the mechanical axis of the lamp and then weighed by the eye response curve (1931 CIE 2° Observer Chromaticity Diagram).
- 2. Luminous Intensity measurement uncertainty is +/- 15% due to test procedures and equipment variations.
- 3. 01/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity. Tolerance +/- 3°.
- 4. Dominant wavelength is derived from the 1931 CIE 2° Observer Chromaticity Diagram.
- 5. Peak and Dominant wavelength measurement uncertainty is +/- 0.05 due to variations.
- 6. Caution for ESD: Static Electricity and surges can damage the LED. It is recommended using a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.
- 7. Do not apply excess mechanical stress to the leads, especially when heated or while soldering.

Brite-LED Optoelectronics

www.brite-led.com

Data Sheet 07/25/06 rev.

