

4mm Oval Precision Through-Hole Package

PL-LBGR4V50D series

FEATURES	APPLICATIONS
 Super luminosity Green LED InGaN / Sapphire die. 4.8mm X 4.2mm Oval Precision Package. Green Diffused Lens. Wide viewing angles (50°(H) / 20° (V). UV Resistant Epoxy for Outdoor use. 	 Traffic Signals. Outdoor Score/Clock Boards Full Color RGB Video Displays VMS. Back or Side lighting. Automotive.

PACKAGE OUTLINE DIMENSIONS:

NOTES:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.25 mm unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

4mm Oval Precision Through-Hole Package

PL-LBGR4V50D series

ABSOLUTE MAXIMUN RATING (at $T_A = 25^{\circ}C$)

Parameter	Symbol	Value	Unit	
Continuous Forward Current	I _F	30	mA	
Peak Forward Current (1/16 Duty Cycle, 0.1msec Pulse width)	I _{Fp}	l _{Fp} 150		
Power Dissipation	P _d	120	mW	
Forward Voltage	V_{f}	3.8	V	
Derating Factor	D _F	0.4	mA / °C	
Reverse Voltage	V_R	V _R 5.0		
Operating Temperature	T _{opr}	-25 to +85	°C	
Storage Temperature	T _{stg}	-35 to +100	°C	
Lead Soldering Temperature (1.6mm (0.063") from body)	260°C for 5 seconds			

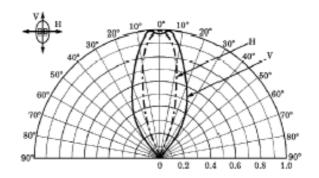
ELECTRICAL / OPTICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$)

Parameter		Symbol	MIN	TYP	MAX	Unit
Forward Voltage	I F= 20 mA	VF		3.3	3.8	V
Luminous Intensity	I F= 20 mA	Ιv	1900	4200	5500	mcd
Dominant Wavelength	I F= 20 mA	λd	510	520	530	nm
Spectrum Radiation Bandwidth	I F= 20 mA	Δλ		34		nm
Reverse Current	V R= 5 V	I _R			50	μА
Viewing Angle Major Axis X		2 θ 1/2		50		deg
Viewing Angle Minor Axis Y		2 θ 1/2		20		deg

GENERAL NOTES:

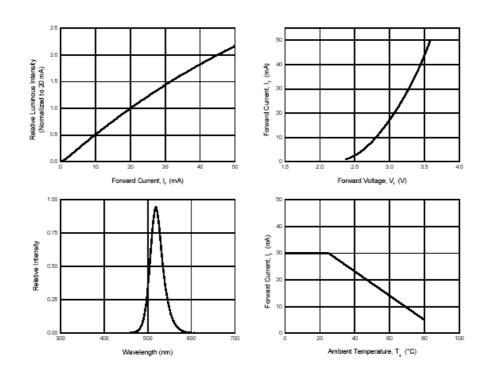
- 1. Luminous Intensity (Iv) is measured with a light sensor and filter combination (goniospectroradiometer) and is the Luminous Flux per unit solid angle (steradian) emitted by the LED lamp in the direction of the mechanical axis of the lamp and then weighed by the eye response curve (1931 CIE 2° Observer Chromaticity Diagram).
- 2. Luminous Intensity measurement uncertainty is +/- 15% due to test procedures and equipment variations.
- 3. θ1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity. Tolerance +/- 3°.
- 4. Dominant wavelength is derived from the 1931 CIE 2° Observer Chromaticity Diagram.
- 5. Peak and Dominant wavelength measurement uncertainty is +/- 0.05 due to variations. Tolerance +/- 1nm.
- 6. Caution for ESD: Static Electricity and surges can damage the LED. It is recommended using a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.
- 7. Do not apply excess mechanical stress to the leads, especially when heated or while soldering.

4mm Oval Precision Through-Hole Package


PL-LBGR4V50D series

LUMINOUS INTESITY RANKS

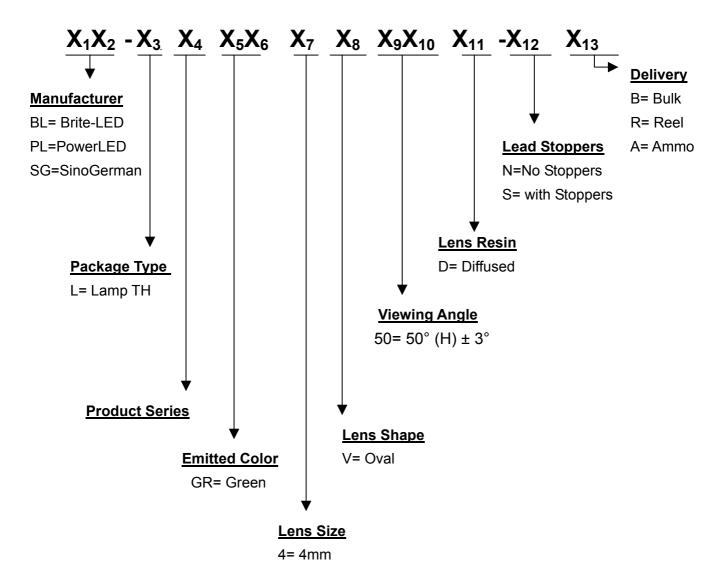
(mcd at 20mA)


Rank	Min	Max
S	1900	2500
Т	2500	3200
U	3200	4200
V	4200	5500

BEAM RADIATION PATTERNS

TYPICAL ELECTRICAL CHARACTERISTICS CURVES

(at 20 mA DC / $T_A = 25$ °C)



4mm Oval Precision Through-Hole Package

PL-LBGR4V50D series

PRODUCT CODE BREAKDOWN

